- repro GitHub - WongKinYiu/yolov7: Implementation of paper - YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors
- create data/pothole.yaml
train: ./Datasets/pothole/train/images
val: ./Datasets/pothole/valid/images
test: ./Datasets/pothole/test/images
# Classes
nc: 1 # number of classes
names: ['pothole'] # class names
- YOLOv7-Tiny Fixed Resolution Training
!sed -i "s/nc: 80/nc: 1/" cfg/training/yolov7-tiny.yaml
!sed -i "s/IDetect/Detect/" cfg/training/yolov7-tiny.yaml
- Download
best.pt
from kaggle.com/rkuo2000/yolov7-pothole
- Compress best.pt to
best.zip
- Go to Amebapro2 AI convert model, fill up your E-mail
- Upload best.zip
- Upload one (.jpg) test picture (EX. pothole_test.jpg from Pothole dataset)
- Email will be sent to you for the link of
network_binary.nb
Example:RTSP_YOLOv7_Pothole_Detection.ino
- save RTSP_ObjectDetectionLoop.ino as RTSP_YOLOv7_Pothole_Detection.ino (
- click the recieved Email link to download
network_binary.nb
- create NN_MDL folder in SDcard, save network_binary.nb under NN_MDL folder, and rename it to
yolov7_tiny.nb
- plugin SDcard back to AMB82-MINI
- modify Sketch RTSP_YOLOv7_Pothole_Detection.ino
- modify SSID and PASSWD
- modify ObjDet.modelSelect(OBJECT_DETECTION, CUSTOMIZED_YOLOV7TINY, NA_MODEL, NA_MODEL);
- modify ObjectClassList.h
ObjectDetectionItem itemList[1] = {
{0, "Pothole", 1},
};
- burn code into board AMB82-MINI, and run it with VLC player streaming
2 Likes