######reparam_yolov7-tiny######
#This script is written by Zhang Chang Ren from Realtek.
import
from copy import deepcopy
from models.yolo import Model
import torch
from utils.torch_utils import select_device, is_parallel
import yaml
device = select_device(‘0’, batch_size=1)
model trained by cfg/training/*.yaml
ckpt = torch.load(‘path to your custom trained yolov7-tiny.pt model: …/…/yolov7-tiny.pt’, map_location=device)
reparameterized model in cfg/deploy/*.yaml
model = Model(‘path to the file yolov7-tiny-deploy.yaml’, ch=3, nc=8).to(device)
with open(‘path to the yaml file provided by realtek: …/…/yolov7-tiny-deploy.yaml’) as f:
yml = yaml.load(f, Loader=yaml.SafeLoader)
anchors = len(yml[‘anchors’][0]) // 2
copy intersect weights
state_dict = ckpt[‘model’].float().state_dict()
exclude =
intersect_state_dict = {k: v for k, v in state_dict.items() if k in model.state_dict() and not any(x in k for x in exclude) and v.shape == model.state_dict()[k].shape}
model.load_state_dict(intersect_state_dict, strict=False)
model.names = ckpt[‘model’].names
model.nc = ckpt[‘model’].nc
reparametrized YOLOR
for i in range((model.nc+5)*anchors):
model.state_dict()[‘model.77.m.0.weight’].data[i, :, :, :] *= state_dict[‘model.77.im.0.implicit’].data[:, i, : :].squeeze()
model.state_dict()[‘model.77.m.1.weight’].data[i, :, :, :] *= state_dict[‘model.77.im.1.implicit’].data[:, i, : :].squeeze()
model.state_dict()[‘model.77.m.2.weight’].data[i, :, :, :] *= state_dict[‘model.77.im.2.implicit’].data[:, i, : :].squeeze()
model.state_dict()[‘model.77.m.0.bias’].data += state_dict[‘model.77.m.0.weight’].mul(state_dict[‘model.77.ia.0.implicit’]).sum(1).squeeze()
model.state_dict()[‘model.77.m.1.bias’].data += state_dict[‘model.77.m.1.weight’].mul(state_dict[‘model.77.ia.1.implicit’]).sum(1).squeeze()
model.state_dict()[‘model.77.m.2.bias’].data += state_dict[‘model.77.m.2.weight’].mul(state_dict[‘model.77.ia.2.implicit’]).sum(1).squeeze()
model.state_dict()[‘model.77.m.0.bias’].data *= state_dict[‘model.77.im.0.implicit’].data.squeeze()
model.state_dict()[‘model.77.m.1.bias’].data *= state_dict[‘model.77.im.1.implicit’].data.squeeze()
model.state_dict()[‘model.77.m.2.bias’].data *= state_dict[‘model.77.im.2.implicit’].data.squeeze()
model to be saved
ckpt = {‘model’: deepcopy(model.module if is_parallel(model) else model).half(),
‘optimizer’: None,
‘training_results’: None,
‘epoch’: -1}
save reparameterized model
torch.save(ckpt,‘path to deploy your reparameterized .pt model: …/…/yolov7-tiny_reparameterized.pt’)
#####yolov7-tiny-deploy.yaml#####
#This script is provided by Zhang Chang Ren from Realtek.
Running of script:
python reparam_yolov7-tiny.py --weights weights/best.pt --custom_yaml custom/yolov7-tiny-deploy.yaml --output best_reparam.pt
Note that for yolov7-tiny-deploy.yaml, last line of yaml need to be changed to Detect.
It has already been changed in this repository.
parameters
nc: 2 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple
anchors
anchors:
- [10,13, 16,30, 33,23] # P3/8
- [30,61, 62,45, 59,119] # P4/16
- [116,90, 156,198, 373,326] # P5/32
yolov7-tiny backbone
backbone:
[from, number, module, args] c2, k=1, s=1, p=None, g=1, act=True
[[-1, 1, Conv, [32, 3, 2, None, 1, nn.LeakyReLU(0.1)]], # 0-P1/2
[-1, 1, Conv, [64, 3, 2, None, 1, nn.LeakyReLU(0.1)]], # 1-P2/4
[-1, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
[-2, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
[-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
[-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
[[-1, -2, -3, -4], 1, Concat, [1]],
[-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 7
[-1, 1, MP, ], # 8-P3/8
[-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
[-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
[-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
[-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
[[-1, -2, -3, -4], 1, Concat, [1]],
[-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 14
[-1, 1, MP, ], # 15-P4/16
[-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
[-2, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
[-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
[-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
[[-1, -2, -3, -4], 1, Concat, [1]],
[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 21
[-1, 1, MP, ], # 22-P5/32
[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
[-2, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
[-1, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
[-1, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
[[-1, -2, -3, -4], 1, Concat, [1]],
[-1, 1, Conv, [512, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 28
]
yolov7-tiny head
head:
[[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
[-2, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
[-1, 1, SP, [5]],
[-2, 1, SP, [9]],
[-3, 1, SP, [13]],
[[-1, -2, -3, -4], 1, Concat, [1]],
[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
[[-1, -7], 1, Concat, [1]],
[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 37
[-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
[-1, 1, nn.Upsample, [None, 2, ‘nearest’]],
[21, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # route backbone P4
[[-1, -2], 1, Concat, [1]],
[-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
[-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
[-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
[-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
[[-1, -2, -3, -4], 1, Concat, [1]],
[-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 47
[-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
[-1, 1, nn.Upsample, [None, 2, ‘nearest’]],
[14, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # route backbone P3
[[-1, -2], 1, Concat, [1]],
[-1, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
[-2, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
[-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
[-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
[[-1, -2, -3, -4], 1, Concat, [1]],
[-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 57
[-1, 1, Conv, [128, 3, 2, None, 1, nn.LeakyReLU(0.1)]],
[[-1, 47], 1, Concat, [1]],
[-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
[-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
[-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
[-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
[[-1, -2, -3, -4], 1, Concat, [1]],
[-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 65
[-1, 1, Conv, [256, 3, 2, None, 1, nn.LeakyReLU(0.1)]],
[[-1, 37], 1, Concat, [1]],
[-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
[-2, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
[-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
[-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
[[-1, -2, -3, -4], 1, Concat, [1]],
[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 73
[57, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
[65, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
[73, 1, Conv, [512, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
[[74,75,76], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]